On completing your answers, compulsorily draw diagonal

Important Note: 1.

CBCS SCHEME

			18CS54
USN			

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 **Automata Theory and Computability**

Max. Marks: 100 Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define the following terms with examples:
 - i) Alphabet
- ii) String
- iii) Language
- iv) Concatenation at Languages (10 Marks)

- v) Power of an Alphabet.
- b. Define DFSM. Design DFSM i) To accept strings having Even number of a's and even number b's
 - ii) To accept binary numbers divisible by 5.

(10 Marks)

a. Convert the following NDFSM of DFSM. [Refer Fig Q2(a)].

Fig Q2(a)

(08 Marks)

b. Minimize the following DFSM by indentifying Distinguishable and Non-distinguishable states.

	δ	0	1
→	A	В	F
	В	G	C
*	C	A	C
	D	C	G
	Е	Н	F
	F	C	G
	G	G	F
	H	G	C
	6.5	0	

(12 Marks)

Module-2

Define Regular Expression. Write RE for the following Languages.

(10 Marks)

- i) Strings of 0's and 1's ending with three consecutive zeroes.
- ii) Strings of a's and b's having substring aa.
- Write DFSM to accept intersection of Languages $L_1 = (a + b)^*a$ and $L_2 = (a + b)^*b$ (10 Marks)

OR

a. Using Kleen's theorem, prove that for any Regular Expression R, their exits a finite (10 Marks) automata $M = (Q, \Sigma, \delta, q_0, F)$ which accepts L(R).

b. State and prove pumping Lemma for Regular Languages. Show that the Language $L = \{ww^r : w \in (0, 1)^*\}$ is not regular.

Module-3

- a. Define Context Free Grammar. Design CFG for the following Languages.
 - i) $L_1 = \{ w : |w| \text{ Mod } 3 = 0 \} \text{ over } \Sigma = \{ a \}$

ii) $L_2 = \{a^n b^m c^k : m = n + k \} \text{ over } \Sigma = \{a, b, c\}$

(10 Marks)

b. Define Ambiguity. Consider the grammar

 $E \rightarrow E + E \mid E * E \mid (E) \mid id$

Find Leftmost and Rightmost derivations and parse tree for the string id + id * id, show that the grammar is ambiguous.

a. What is Chomsky Normal Form of CFG? Convert the following grammar to CNF.

 $S \rightarrow ABC | BaB$

A → aA | BaC | aaa

B → bBb |a| D

C - CA | AC

EWIT-LIBRARY

Eliminate ε - productions, Unit productions and useless symbols if any before conversion.

b. What is NPDA? Design NPDA for Language $L = \{a^nb^n \mid n \ge 1\}$. Draw transition diagram. (10 Marks) Write sequence of moves made by NPDA to accept the string aaabbb.

Module-4

- Design TM for WCW^R over $\Sigma = \{0, 1\}$. Write transition diagram, and ID for w = 101C101
 - Explain: i) Multitape ii) Non-deterministic TM

(06 Marks)

a. Define Turning Machine. Explain the working of Turning Machine.

(06 Marks)

b. Design Turning machine to accept the Language $L = \{0^n1^n2^n | n >= 0\}$. Draw the transition (14 Marks) diagram. Write sequence of moves made by TM for string 001122.

Module-5

a. Explain Halting problem in Turning machine.

(07 Marks)

b. Write applications of Turning Machine.

(06 Marks)

c. Explain Recursively Enumerable Languages.

(07 Marks)

10 a. Explain Quantum Computers.

(07 Marks)

b. Explain P and NP classes.

(07 Marks)

Explain Church Turning Thesis.

(06 Marks)

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following with example:
 - i) String ii) Language iii) Alphabet iv) Symbol

(04 Marks)

- b. Design a DFSM to accept each of the following language:
 - i) $L = \{w \in \{a, b\}^*; w \text{ has all strings that ends with sub string abb }\}$
 - ii) $L = \{w; \text{ where } w \mod 3 = 0 \text{ where } \Sigma = \{a\}\}$

iii) L = {w \in \{a, b\} every a region in w is of even length.}

(09 Marks)

c. Construct an equivalent DFA from the following given NFA using subset construction method. (Refer Fig.Q.1(c)) (07 Marks)

OR

2 a. Construct a minimum state automation equivalent to the FA given table

States	0	1,40
$\rightarrow q_0$	q_1	q ₅
qı	96	q ₂
9	qo	q ₂
q ₃	,q2	96
94	97	q 5
195	q ₂	96
96	96	q ₄
³ q ₇	96	q ₂

(10 Marks) (10 Marks)

b. Consider the following NFA with e-moves construct on equivalent DFA.

Fig.Q.2(b)

Module-2

- 3 a. Define Regular expression. Write RE for the following languages:
 - i) $L = \{a^n b^m | m + n \text{ is even}\}$
 - ii) $L = \{a^n b^m | m \ge 1 \ n \ge 1 \ nm \ge 3\}$
 - iii) $L = \{a^{2n}b^{2m} | n \ge 0, m \ge 0\}$

(10 Marks)

b. Construct an ∈ - NFA for the regular expression 0 + 01

(05 Marks)

c. Construct on FA for the regular expression $10 + (0 + 11)0^*1$

(05 Marks)

OR

4 a. State and prove pumping lemma theorem for regular languages.

(08 Marks)

b. Prove that $L = \{a^p | p \text{ is a prime}\}\$ is not a regular.

(08 Marks)

c. List out closure properties of regular sets.

(04 Marks)

Module-3

- 5 a. Define CFG. Write a CFG to specify
 - i) all string over {a, b} that are even and odd palindromes.

ii) $L = \{a^n b^{2n} \text{ over } \Sigma = \{a, b\} n \ge 1\}$

(10 Marks)

b. Write the procedure for removal of ∈-productions. Simplify the following grammar.

 $S \rightarrow aA \mid aBB$

 $A \rightarrow aAA \in A$

 $B \rightarrow bB \mid bbC$

 $C \rightarrow B$

EWIT-LIBRARY

(10 Marks)

OI

6 a. Define PDA. Design a PDA for the language that accepts the string with $n_a(w) < n_b(w)$ where $w \in (a + b)^*$ and show the instantaneous description of the PDA on input abbab.

(10 Marks)

b. What is CNF and GNF? Convert the following grammar into GNF

 $S \rightarrow AA$ a

 $A \rightarrow SS b$

(10 Marks)

Module-4

7 a. With a neat diagram, explain variant of turning machine.

(10 Marks)

b. Construct a Turning machine that accept the language 0ⁿ, 1ⁿ where n > 1 and draw transition graph for Turning Machine. (10 Marks)

OR

8 a. Define Turning Machine with its tuples.

(04 Marks)

b. Explain the working principle of Turning Machine with diagram. Design a Turing Machine to accept strings formed on {0, 1} and ending with 000. Write transition diagram and ID for w = 101000.

(16 Marks)

Module-5

9 a. Explain restricted turing machines.

(08 Marks)

- b. Explain the following with example:
 - i) Decidability
- ii) Decidable languages
- iii) Undecidable languages.

(12 Marks)

OR

- Write a short note on:
 - a. Post correspondence problem
 - b. Halting problems in Turning Machine
 - c. Linear Bound Automation (LBA)
 - d. Classes of P and NP

(20 Marks)

CBCS SCHEME

	T		18CS54
USN			10000

Fifth Semester B.E. Degree Examination, July/August 2022 Automata theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define the following terms with an example i) Alphabet ii) Power of an alphabet iii) String iv) String concatenation v) language. (05 Marks)
 - b. Explain the hierarchy of language classes in automata theory with diagram. (05 Marks)
 - c. Design DFSM for each of the following language.
 - i) $L = \{\omega \in \{0,1\}^* : \omega \text{ does not end in } 01\}$
 - ii) $L = \{ \omega \in \{a, b\} : \text{ every a in } \omega \text{ is immediately preceded and followed by b} \}.$

(10 Marks)

EWIT-LIBRARY

Use MiNDFSM algorithm to minimize M given in Fig Q2(a).

Fig Q2(a)

(08 Marks)

b. Convert the following NDFSM given in Fig Q2(b) to its equivalent DFSM.

Fig Q2(b)

(08 Marks)

c. Design a mealy machine that takes binary number as input and produces 2's complement of the number as output. (04 Marks)

Module-2

- 3 a. Define Regular expression. Write regular expression for the following language.
 - i) $L = \{0^n 1^m | m \ge 1, n \ge 1, mn \ge 3\}$
 - ii) $L = \{ \omega \in \{a, b\}^* : \text{string with atmost one pair of consecutive a's} \}$ (08 Marks)
 - b. Obtain NDFSM for the regular expression (a Uab) (a Ub). (05 Marks)

c. Build a regular expression for the given FSM in Fig Q3(c).

Fig Q3(c)

(07 Marks)

OR

4 a. State and prove pumping Lemma theorem for regular language.

(08 Marks)

b. Prove that regular languages are closed under complement.

(05 Marks)

c. Write regular expression, regular grammer and FSM for the languages

(07 Marks)

 $L = \{ \omega \in \{a, b\}^* : w \text{ ends with pattern aaaa} \}.$

EWIT-LIBRARY

Module-3

5 a. Define Context Free Grammer (CFG). Write CFG for the following languages

 $L = \{0^m 1^m 2^n : m \ge 1, n \ge 0\}.$

(05 Marks)

b. What is ambiguity in a grammar? Eliminate ambiguity from balanced parenthesis grammar?

(08 Marks)

c. Simplify the grammar by removing productive and unreachable symbols

 $S \rightarrow AB|AC$

 $A \rightarrow aAb \in$

 $B \rightarrow bA$

 $C \rightarrow bCa$

 $D \rightarrow AB$

(07 Marks)

OR

6 a. Define PDA and design PDA to accept the language by final state method. $L(M) = \{ \omega C \omega^R \mid \omega \in (a \cup b)^* \text{ and } \omega^R \text{ is reverse of } \omega \}$

(07 Marks)

b. Convert the following grammar to CNF

 $S \rightarrow ASB \in$

A - a AS a

B → SbS|A|bb

(08 Marks)

c. Consider the grammar

 $E \rightarrow E + E|E * E|(E)|id$

Construct LMD, RMD and parse tree for the string (id + id * id).

(05 Marks)

Module-4

7 a. Define Turing Machine (TM). Design a TM for language

 $L = \{0^n 1^n \mid n \ge 1\}$. Show that the string 0011 is accepted by ID.

(10 Marks)

b. Explain multiple TM with a neat diagram.

(05 Marks)

c. Explain any two techniques for TM construction.

(05 Marks)

(07 Marks)

OR

- 8 a. Design a TM for the language $L = \{1^n 2^n 3^n \mid n \ge 1\}$ show that the string 11 22 33 is accepted by ID. (12 Marks)
 - b. Demonstrate the model of Linear Bounded Automata (LBA) with a neat diagram. (08 Marks)

Module-5

- 9 a. Show that A_{DFA} is decidable. (05 Marks)
 - b. Define Post Correspondence Problem (PCP). Does the PCP with two list $x = (b, bab^3, ba)$ $y = (b^3, ba, b)$ have a solution. (08 Marks)
 - c. Explain quantum computation.

EWIT-LIBRARY

OR

- 10 a. Prove the A_{TM} is undecidable. (05 Marks)
 - b. Does the PCP with two list x = (0, 01000, 01) y = (000, 01, 1) have a solution. (05 Marks)
 - c. State and explain Church Turning Thesis in detail. (10 Marks)

Fifth Semester B.E. Degree Examination, July/August 2021 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Define the following terms with examples alphabet, powers of an alphabet string, string concatenation and languages. (10 Marks)
 - b. Define DFSM. Design a DFSM to accept each of the following languages:
 - i) $L = \{W \in \{0.1\}^* : W \text{ is ending with } 011\}$
 - ii) $L = \{W \in \{0.1\}^* : W \text{ has odd numbers of a's and even numbers of b's} \}$ (10 Marks)
- 2 a. Convert the following NDFSM to DFSM:

δ	3	a	b	c
$\rightarrow p$	ф	{p}	{q}	{r}
q	{p}	{q}	{r}	ф
*r	{q}	{r}	ф	{p}

(10 Marks)

b. Define distinguishable and Indistinguishable states. Minimize the following DFSM.

δ	a	b
$\rightarrow A$	В	F
В	G	C
*C	A	C
D	C	G
E	Н	F
F	C	G
G	G	E
Н	G	C

EWIT-LIBRARY

(10 Marks)

- 3 a. Define Regular expression. Write the regular expression for the following languages:
 - i) To accept strings of a's and b's such that third symbol from the right is 'a' and fourth symbol from the right is 'b'.
 - ii) $L = \{a^n b^m; n \ge 4, m \le 3\}$

(10 Marks) (06 Marks)

b. Build a regular expression from the following FSM (Finite State Machine).

Fig.Q.3(b)

c. Write an equivalent NDFSM for the following regular expression a(a* + b*)*b. (04 Marks)

- Show that regular languages are closed under complement and intersection. (10 Marks)
 - b. State and prove pumping lemma theorem for regular languages. And show that the language $L = \{WW^R : W \in \{0, 1\}^* \text{ is not regular}\}.$ (10 Marks)
- a. Define CFG (Context Free Grammar). Design CFG for the languages.
 - i) $L = \{ O^{2n} 1^m | n >= 0, m >= 0 \}$
 - $L = \{O^{i}1^{j}2^{k}|i=j \text{ or } j=k\}$

(10 Marks)

- b. Define Ambiguity. Is the following grammar ambiguous? Give reason.
 - S → iCts iCtSeSa

 $C \rightarrow b$

10

EWIT-LIBRARY

(10 Marks)

- a. Define CNF (Chomsky Normal Form). Convert the following CFG to CNF.
 - $S \rightarrow aACa, A \rightarrow B|a, B \rightarrow C|c, C \rightarrow cC|\epsilon$

(10 Marks)

- b. Define PDA (Push Down Automata). Design a PDA to accept the following language, $L = \{a^nb^n : n > = 0\}$. Draw the transition diagram for the constructed PDA. Show the ID's (10 Marks) for the string aaabbb.
- a. Define a Turing Machine. Explain the working of a Turing Machine. (08 Marks)
 - b. Design a Turing Machine to accept $L = \{0^n 1^n 2^n | n >= 0\}$. Draw the transition diagram. Show the moves made for string 001122. (12 Marks)
- Design a TM for addition of 2 numbers (2 + 3) with transition diagram and ID for the same.
 - (14 Marks)

b. Define and differentiate DTM and NDTM.

(06 Marks)

(08 Marks)

(04 Marks)

- Explain post correspondence problem.
 - b. Explain Halting problem in Turing Machine.

 - c. Write a note on Church Turing Hypothesis.

(08 Marks)

a. Explain three variants of Turing Machine.

(12 Marks)

Write a note on Quantum Computation.

(08 Marks)

Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

Fifth Semester B.E. Degree Examination

Automata Theory and Computability

TIME: 03 Hours Max. Marks: 100

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

		Modulo 1	
	8 8	Module – 1 Define the following towns with groundless Alphahet, Deven of an alphahet String	
	(a)	Define the following terms with examples: Alphabet, Power of an alphabet, String, Concatenation and Languages.	10
Q.1		Define DFSM. Design a DFSM to accept each of the following languages:	14.00000
	(b)	i) L= $\{w \in \{0,1\}^* : w \text{ has } 001 \text{ as a substring}\}$	10
52		ii) L={ $w \in \{0,1\}^*$: w has even number of a's and even number of b's}	37
		OR	
		Convert the following NDFSM to DFSM.	
		δ ϵ a b c	10
	(a)	->p {q,r} {} {q} {r}	10
	(5.52)	q {} {p} {r} {p,q}	
		*r {} {} {}	
		Define distinguishable and indistinguishable states. Minimize the following DFSM.	
Q.2		δ a b	
SEEK		->A B F	
	(b)	B G C	
		*C A C	10
		D C G	10
		E H F	
		F C G	
		G G E	
		H G C	
R:	13 33	Module – 2	
	(a)	Define Regular expression. Write the regular expression for the following languages:	10
		 Representing for strings of a's and b's having odd length. 	
		ii) To accept strings of a's and b's such that third symbol from the right is a and	
Q.3		fourth symbol from the right is b.	
	(b)	Use the fsmtoregexheuristic algorithm to construct a regular expression that describes	10
		L(M).	
		δ a b	
		->*1 2 {}	
		*2 3 1	
		3 3 1	
	10 8 300	OR	
	(a)	Show that regular languages are closed under complement and intersection.	8
	(b)	State and prove pumping lemma theorem for regular languages. And show that the	12
	(3)	language L={ ww^r ; $w \in \{0,1\}^*$) is not regular.	
1			

		Module – 3	
Q.	(a)	Define CFG. Design CFG for the languages i) $L=\{0^{2n}1^m \mid n>=0,m>=0\}$ ii) $L=\{0^i1^j2^k \mid i=j \text{ or } j=k\}$	10

- 8		
(0)	rightmost derivations and parse trees for the string id+id*id. And show that this	
	grammar is ambiguous.	
	OR	
(a)	Define CNF. Convert the following CFG to CNF.	10
R 8	S->aACa	
	A->B/a	
	B->C/c	
	C->cC/€	
(b)	Define PDA. Design a PDA to accept the following language. L={a ⁿ b ⁿ ; n>=0}. Draw the transition diagram for the constructed PDA. Show the ID's for the string anabbb.	10
	Module – 4	6
(a)	With a neat diagram, explain variants of Turing Machines	10
(b)	Explain Language Acceptability and Design of Turing Machines.	8
(a)	Define a Turing machine. Explain the working of a Turing machine.	8
(b)	Design a Turing machine to accept $L=\{0^n1^n2^n n>=0\}$. Draw the transition diagram.	12
(6)	Show the moves made for string aabbcc.	
	Module – 5	
(a)		7
	1 ★ 550 ★ 660074-550 New ★ 66 2000 Stock ★ 6600 Stock ★	6
(b)		0
(c)	Explain recursively enumerable language.	7
	OR	
(a)	Explain Church Turing thesis.	7
(b)	Explain Quantum computer.	6
(0)		
(c)	Explain Growth rate of function.	7
	(a) (b) (a) (b) (a) (b) (c) (a)	rightmost derivations and parse trees for the string id+id*id. And show that this grammar is ambiguous. OR (a) Define CNF. Convert the following CFG to CNF. S->aACa A->B/a B->C/c C->cC/c C->cC/c (b) Define PDA. Design a PDA to accept the following language. L={a^nb^n ; n>=0}. Draw the transition diagram for the constructed PDA. Show the ID's for the string aaabbb. Module - 4 (a) With a neat diagram, explain variants of Turing Machines (b) Explain Language Acceptability and Design of Turing Machines. OR (a) Define a Turing machine. Explain the working of a Turing machine. (b) Design a Turing machine to accept L={0^n1^n2^n} n>=0}. Draw the transition diagram. Show the moves made for string aabbcc. Module - 5 (a) Explain post correspondence problem. (b) Explain Halting problem in Turing machine. (c) Explain recursively enumerable language. OR (a) Explain Church Turing thesis.

Та	ble sh	nowing the Bloom's Tax	Outcome	come and Programme		
Question		Bloom's Taxonomy L attached	Course Outcome	Programme Outcome		
Q.1	(a)	L1	1	1,12		
		L1,L3	2	1,2,12		
	(c)					
Q.2	(a)	L3	2	1,2,12		
	(b)	L1,L3	2	1,2,12		
	(c)					
Q.3	(a)	L2	3	1,2,3,4,12		
		L3	3	1,2,3,4,12		
	(c)	_				
Q.4	(a)	L2	3	1,2,3,4,12		
		L2,L3	3	1,2,3,4,12		
	(c)					
Q.5		L1,L3	3	1,2,3,4,12		
		L2	3	1,2,3,4,12		
	(c)	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Contraction and action of contraction		
Q.6		L1,L3	4	1,2,3,4,12		
Ų.u		L1,L3	3	1,2,3,4,12		
	(c)					
Q.7		L2,L3	3	1,2,3,4,12		
		L2	3	1,2,3,4,12		
	(c)	1,000		\$		
Q.8		L2	4	1,2,3,4,12		
		L3	4	1,2,3,4,12		
	(c)			Contract of the contract of th		
Q.9		L2	5	1,2,12		
	0.000 0.000000	L2	5	1,2,12		
	200011200	L2	5	1,2,12		
Q.10		L2	5	1,2,12		
		L2	5	1,2,12		
		L2	5	1,2,12		
		1000	1	188 88		
9100	30		Lower order thinking skil			
Bloom'	200	Remembering(Understanding	Applying (Application)		
Faxono Levels	my _	knowledge): L_1	Comprehension): L ₂ Higher order thinking ski	L_3		
Levels	L	Analyzing (Analysis): L ₄	Valuating (Evaluation): L_5	Creating (Synthesis): L		

USN											18CS54
-----	--	--	--	--	--	--	--	--	--	--	--------

Fifth Semester B.E. Degree Examination, June/July 2023 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following terms with example
 - i) Alphabet ii) Power of an alphabet iii) Language

(06 Marks

- b. With a neat diagram, explain a hierarchy of language classes in automata theory. (04 Marks)
- c. Define deterministic finite state machine. Design DFSM
 - i) To accept strings having odd number of a's and odd number of b's
 - ii) To accept strings having number of a's divisible by 5 and number of b's divisible by 3.

 (10 Marks)

OR

a. Convert the following NDFSM [Refer Fig Q2(a)] to its equivalent DFSM.

Fig Q2(a)

(10 Marks)

b. Define distinguishable and indistinguishable states minimize the following DFSM shown in

9	Table Q2(0)				
		δ	a	b	
	\rightarrow	A	B	E	
		В	C	F	
	*	C	D	Н	
		D	Е	Н	
	1	E	F	I	
	*	F	G	В	
b.		G	Н	В	
		H	I	C	
	*	I	A	E	

(10 Marks)

Module-2

- a. Define regular expression. Obtain a regular expression for the following:
 - i) $L = \{a^n b^m \mid n \ge 4, m \le 3\}$
 - ii) $L = \{w : n_a(w) \mod 3 = 0 \text{ where } w \in (a, b)^*\}$
 - iii) $L = \{w : \text{ strings ends with ab or ba where } w \in \{a, b\}^*\}$
 - iv) $L = \{a^{2n}b^{2m} | n \ge 0, m \ge 0\}$

(10 Marks)

b. Consider the DFSM shown below

Sta	tes	0	1
\rightarrow	q_1	q_2	q_1
	q_2	q ₃	q
2/4	q_3	q ₃	q_2

Obtain the regular expression $R_{ij}^{(0)}$, $R_{ij}^{(1)}$ and simplify the regular expression as much as possible.

OF

- 4 a. Using Kleen's theorem, prove that only language that can be defined with a regular expression can be accepted by source FSM. (10 Marks)
 - b. State and prove pumping lemma for regular language and show that the language $L = \{a^ib^j \mid i > j\}$ is not regular. (10 Marks)

Module-3

5 a. Define context free grammar. Design CFG for the following language.

i) $L = \{0^1 \ 1^j \ | \ i \# j, \ i \ge 0, \ j \ge 0\}$ ii) $L = \{a^n b^m \ | \ n \ge 0, \ m > n\}$

(10 Marks)

b. Define Ambiguity consider the grammar

 $E \rightarrow E + E \mid E - E \mid E \times E \mid E/E \mid a/b$

Find Leftmost and Rightmost derivation and parse tree for the string a + b * a + b, show that the grammar is ambiguous.

(10 Marks)

OR

6 a. Define Chomsky normal form and Greibach normal form. Convert the following grammar to CNF

 $S \rightarrow OA \mid 1B$

 $A \rightarrow OAA \mid 1S \mid 1$

 $B \rightarrow 1BB \mid 0S \mid 0$

(10 Marks

b. Define a PDA. Obtain PDA to accept the language L = {wcw^R / w∈ {a, b} * where w^R is reverse of w by a final state. Draw transition diagram. Write sequence of moves made by PDA to accept the string aabcbaa.

(10 Marks)

Module-4

- 7 a. Define Turing machine. Explain with neat diagram the working of a Turing machine model.
 (06 Marks)
 - b. Design turning machine to accept the language $L = \{a^nb^nc^n \mid n \ge 1\}$. Draw the transition diagram and shown the moves made by turing machine for the string aabbcc. (14 Marks)

OR

8 a. Explain various technique used for construction of turing machine.

(05 Marks)

b. Explain the following;

- i) Multitape Turing machine
- ii) Non-deterministic Turing machine
- iii) Linear bounded automata

(15 Marks)

Module-5

9 a. Explain halting problem in Turing machine prove that

 $HALT_{TM} = \{(M, W) \mid The Turing machine M halts on input w\}$ is undecidable. (10 Marks)

Define decidable language prove that DFA is decidable language (ADFA is decidable)

(10 Marks)

OR

10 a. Explain quantum computers

(06 Marks)

b. Explain Church-Turing Thesis

(07 Marks)

c. Explain post correspondence problem.

(07 Marks)

CBCS SCHEME

USN

18CS54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2023 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define DFSM. Design DFSM
 - i) To accept strings over {a, b} such that each block of 5 (length five) consecutive symbols have at least two a's.
 - ii) To accept $L = \{\omega(ab + ba) \mid \omega \in \{a, b\}^*\}$

iii) To accept $L = \{\omega bab \mid \omega \in \{a, b\}^*\}$

(10 Marks)

b. Define distinguishable and indistinguishable states. Minimize the following DFSM.

δ	0	1
$\rightarrow A$	В	Α
В	A	C
C	D	В
* D	D	A
E	D	F A
F	G	E
G	F	AG
H	G	D
		7

(10 Marks)

OR

2 a. Convert the following NDFSM to DFSM. [Refer Fig.Q2(a)]

Fig.Q2(a)

(08 Marks) (06 Marks)

b. Explain the simulators for Finite State Machine.

c. Design

- (i) Mealy Machine that accepts the string that ends either with an or bb and $\Sigma = \{a, b\}$
- (ii) Moore Machine that produces 'A', 'B' and 'C' depending on inputs that end with '10', '11' and others respectively. (06 Marks)

Module-2

a. Build regular expression from the following FSM. [Refer Fig.Q3(a)].

Fig.Q3(a)

(05 Marks)

b. State and prove pumping Lemma theorem for regular languages. Show that $L = \{a^nb^n \mid n \ge 0\}$ is not Regular. (10 Marks)

Show that regular languages are closed under complement and intersection.

(05 Marks)

(05 Marks)

Obtain Regular Expression for the following languages. (i) $L = \{ a^n b^m c^p \mid n \le 4, m \ge 2, p \le 2 \}$ (ii) $L = \{ \omega : |\omega| \mod 3 = 0 \& \omega \in \{a, b\}^* \}$ (iii) $L = \{ a^n b^m | m + n \text{ is even } \}$ (08 Marks) b. Prove Kleen's theorem – Any language that can be defined with a regular expression can be accepted by some FSM and so is regular. c. Obtain NDFSM for the following regular expression (a + b)* abb. (04 Marks) Module-3 Design a PDA for the language $L = \{ \omega c \omega^{R} | \omega \in (a, b)^{*} \text{ where } \omega^{R} \text{ is reverse of } \omega \}$ and show the moves made by PDA for the string "aabebaa" and "abacbba". (10 Marks) b. Define Lestmost derivation, Rightmost derivation and Parse tree. Consider the grammar. $S \rightarrow AbB$ $A \rightarrow aA \in$ $B \rightarrow aB \mid bB \mid \in$ $D \rightarrow a \in$ Obtain LMD, RMD and parse tree for the string "aaabab". (10 Marks) Define CFG and design a CFG for the following language. (i) $L = \{0^m \ 1^m \ 2^n \mid m \ge 1 \text{ and } n \ge 0\}$ (ii) $L = \{ \omega \omega^R \mid \omega \in (a, b)^* \}$ (iii) $L = \{a^n b^m c^k \mid n+2m = k \text{ for } m \ge 0 \text{ and } n \ge 0 \}$ (10 Marks) b. Define CNF. Convert the following CFG into CNF. $S \rightarrow ASB \mid \in$ $A \rightarrow aAS \mid a$ $B \rightarrow SbS \mid A \mid bb$ (10 Marks) Module-4 Define TM and design a turing machine for $L = \{\omega \mid \omega \in (0+1)^* \text{ containing the substring } 001\}$ Write transition diagram and show the moves made by the Turing machine for input string 10010. (14 Marks) Define and explain DTM and NDTM. (06 Marks) OR a. With a neat diagram explain the working of Multitape Turing Machine. b. Design a Turing machine to accept $L = \{0^n 1^n \mid n \ge 1\}$. Show the moves made for the string 0011 and 00111. (12 Marks) Module-5 Write short notes on: a. Linear Bound Automata (06 Marks) b. Church Turing Thesis (07 Marks) Non-Deterministic Turing Machine (07 Marks) OR Explain Halting Problem and Post Correspondence problem in Turing Machine. (10 Marks) b. Discuss the following: i) Decidable and Undecidable Language (05 Marks)

ii) Quantum Computers